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A descriptive account of a type of iterative method for solving elliptic equations is 
given. This type of method involves the use of more than one finite difference or element 
grid. A new rapidly convergent algorithm of this type is proposed and numerical results 
demonstrating its usefulness are presented. 

1. INTRODUCTION 

Some recent proposals for solving the finite difference equations arising from 
second-order elliptic differential equations have involved the use of more than one 
finite difference grid or finite difference operator. For brevity we refer to such 
methods as being of multiple grid type. The general principle underlying this type 
of method was understood by pencil and paper relaxation users, and the method 
used by them and based on this principle was called “block relaxation.” The 
proposed machine implementations, however, owe little or nothing to this earlier 
work. 

The class of algorithms under discussion is of importance for the following 
reasons: For second-order elliptic equations in the plane it contains members 
with the property that in order to reduce a norm of an initial error by a factor of 
lo-“, requires an amount of work proportional to the number of gridpoints n 
and p. By this we mean that there is a constant K such that the amount of work is 
bounded by Kpn machine operations. It seems clear that no algorithm can improve 
on this figure, except for providing a lesser value for K. Many general algorithms 
involve corresponding work in Kpn” where 01 > 1. For SOR with optimal o, 
01 = 3/2, moreover, even the “fast direct methods” with their limited usefulness, 
have a work count that is greater than O(n) operations. All that this means is that 
multiple grid methods deserve investigation. We shall say more about where the 
above results can be found later. It must be said here that the implementation of a 
multiple grid method involves a high strategic component. One reason for this is 
the need to keep the machine overheads down to a reasonable level. Moreover, 
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although it may not be considered important from the point of view of the 
“optimal” use of the computing machinery, programming a multiple grid method 
is a rather complex operation. This situation can be compared with SOR, for 
which the programming is often rather simple. There appears to be a real need for 
more suggestions as to how a multiple grid method might be implemented 
efficiently, with supporting numerical evidence. 

The present paper is descriptive in character. We hope to provide some rigorous 
analysis later. In Section 2 there is an explanation of the underlying principle of 
the methods and a brief account of what has been done so far. In Section 3 we 
show a general principle for constructing a kind of “coarse grid” finite difference 
operator, In Section 4 another multiple grid type of algorithm of general utility 
is proposed and its workings are explained, and in Section 5 numerical results are 
given to show the implementability of the algorithm (which is rapidly, but not 
optimally convergent). 

The remainder of this section is devoted to a very brief note on elimination 
methods for solving elliptic difference equations. Although not strictly relevant 
to what follows, we shall discuss these here. There has been a tendency to assume 
that the demise of iterative methods is imminent (e.g., see [l 1, p. 331). A look at 
the work count of the elimination process should dispel these notions. Well-known 
work [5,8] shows that at least for second-order equations it seems unlikely that 
the work count can be obtained below 0(ns/3 operations. (This figure is for a 
five-point difference formula or the simplest finite element system.) If we agree that 
O(n) operations is the optimal figure, then the implication is that simple elimination 
can never be optimal. This is a serious matter, but it is only to be expected since 
the elimination process takes no real account of the ellipticity, while the multiple 
grid methods, for example, make essential use of it. The situation with higher-order 
equations is less clear, though even here, without the use of iterative improvement, 
elimination processes might be prone to stability problems, while rapidly con- 
vergent iterative methods are relatively free of this difficulty because their stability 
properties are determined essentially by the condition of the iteration operator 
and not that of the coefficient matrix. Multidimensional problems can be expected 
to cause further difficulties. Probably the best kind of algorithm would use both 
iteration and elimination. 

2. GENERAL PRINCIPLES 

To illustrate the essence of the multiple grid idea, we consider the following 
model problem: Let s2 denote the square 
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and aJ2 its boundary. Find u such that 

-Au= - ($+$) =f(P) PEG 

u(Q) = v(Q) QEaQ, 

cp being given. 
To solve this problem, we proceed in the usual way, namely, by writing down the 

discrete problem 
-A,& = fl Pij E Q, 

d‘i = dQii> Qij E a% 
Cm 

where uh is a grid function defined at the points Pij of the grid 

LRh = {(XC , JJ,) E Pij ( xi = ih, JJj = jh, i, j = 0, I,..., (IZ + l)], 

and where A, is the difference operator such that 

AhUij = h-‘(Ui+l,s - 2Uij + ~z-1.j) + h-‘(ui,j+l - 2~ij + ui.j-3. 

Choosing an arbitrary, fixed listing of the interior gridpoints Pij E J&, , and 
applying (2.2) to each point in order gives the system of linear equations 

Ahuh = bh (2.3) 

where Ah is a positive definite matrix with diagonal elements 4h-2 and bh is defined 
in the obvious way. 

The eigenvectors whzksz of A, are known to be (up to a common constant 
multiplier) 

h:k.l 
w, j = lVh”BL(Pi~) = sinkihsinljh; i,j= 1,2 ,..., 17; k,I= 1,2 ,..., 12 (2.4) 

with corresponding eigenvalues 

4 kh A:,, = - sin2 - + - 4 sin2 !?I! 
h2 2 h2 2 - (2.5) 

With this notation the general principle may be explained thus: Let h, = 
n/(n, + 1) and h, = vr/(n2 + 1) n, > n2 . The terms, h, , dehnes the “fine” grid 
and h, defmes the “coarse” grid; h, is assumed to be chosen in such a way that the 
work involved in reducing the error in a given initial approximation to the solution 
of 

A hz uhz = b”2 (2.6) 
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by a given factor 10-p is small compared to the work involved for a similar 
operation on (2.3). Let iPa be the approximate solution to (2.6) thereby obtained. 
Now suppose that Ehs is extended by some (local) interpolation process onto D,I 
and let iihr denote the interpolated grid function, defined on J& . 

The important fact about Eih2 is that provided hI and hz are small and sufficiently 
close to each other (how close will depend, among other things, on how rapidly b’“l 
oscillates), the difference ~~1 - Ih 2 will have only small projections along the 
eigenvectors, whl;‘J, k, I = 1, 2 ,..., n2, of Ah . (The eigenvectors whcZli.z are 
assumed normalized in some way independent ‘of i, i = 1,2.) Loosely speaking, 
this comes about because ~~l:~*l, w~s:~,~, k, I = 1,2,..., n2 for h, near to h, have the 
common “representation” (2.4). Evidently, certain facts about the interpolation 
process are implicit in this argument. Hence, there are grounds for supposing that 
most of the difference zZh* - uhl lies in the subspace of Rnlr spanned by the more 
oscillatory eigenvectors, whl;liJ, k, 1 = n2 + l,..., n, . Oscillating error vectors are 
easy to reduce by conventional relaxation techniques, as we indicate later. The 
essence of a multiple grid method is the elimination of long wavelength error 
components by the use of coarse grid operations, and the elimination of short 
wavelength errors by other (relaxation) techniques. For various reasons the above 
suggestions must not be taken too literally and indeed must be modified to construct 
a working algorithm, but the principle is a valid one. 

For the purposes of illustration, we now briefly consider a specific proposal for 
a multiple grid algorithm made by Fedorenko [3,4]. This work seems to be the 
first systematic multiple grid method proposed and analyzed. The basic algorithm 
has three steps and will be described for the model problem of Section 2 with 
CJJ = 0. A few notations are needed. Let ah’ be a grid, and with h’ 3 h, suppose 
that 0,’ c oh so that 0,. is a subgrid of oh . If vh is defined on D, then by 0”’ 
we mean the restriction of vh to !&I. Below we choose 

h = 42” and h’ = 7~/2=-~, i&‘ci&. 

For any h, we use the norm for grid functions 

and lastly, define the residuals 

,.h.k = AhUh.k _ bh 

for grid functions uh*li, so that if l hvk = uh,li - uh, then 

AhE h,k = ,.h.k 
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To carry out the algorithm we need an initial approximation uhso, integers p and m, , 
and a parameter LY > 0. Then 

(1) Do m, iterations of the relaxation algorithm 
Uh.k = Ua.k-i - (Y(A~~A.B-I _ bh) k = 1, 2 ,..., m, . 

(2) Compute vh’ so that 

II An+ 
h’ - Yh’*mo jlhf < 10-g 11 rh’*mo Ilh’ . 

(3) Interpolate vh’ (defined on &s) onto Gh to get Eh’ and then set 
fih.k = uh,k _ fib’ 

For completeness, we give the details of step 3. They are as follows: to interpolate 
a given grid function vh’ from Qh, onto ab where h = h//2, if fiA’ is the interpolate, 
then 

-h’ h’ 
Vij = Vij i, j even 

= S(VElf + Vfllj) i odd, j even 

= 4(&l + ULl) i even, j odd 

= *(&A+1 + 4~l.j-1 + &l.j-1 + Vf~l,j+l) i odd, j odd. 

Returning now to the algorithm itself we may add the following remarks. 
Regarding step 1, we have that 

where eF,$ are the Fourier components of the initial error. For all those indices i, j 
for which I(1 - c&)1 is sufficiently small, the corresponding error components 
will be substantially reduced by step 1. For example, if (Y = i, a simple computation 
with (2.5) shows that for i, j 3 2+l + 1, /(I - c~x~j)j < 0.7. Notice that if 01 = a, 
so that the iterations in step 1 are Jacobi iterations, the eigencomponents associated 
with the center of the spectrum are the ones first eliminated. The suboptimal choice 
ofol=% ensures that the eigencomponents associated with most rapidly varying 
eigenfunctions are reduced fastest. Notice also that no choice of 01 leading to a 
convergent relaxation algorithm will give “rapid” reduction of the components 
of the slower varying eigenfunctions. This phenomenon seems to be a characteristic 
of all “one” parameter relaxation methods, including SOR. If it were possible 
to discover an algorithm free of this difficulty (multiple grid algorithms are in this 
category), then obviously, rapidly convergent general methods could be constructed. 
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Step 2 of the algorithm may be described as the computation of an approximate 
solution to the equation 

A,,,E h’.m, = ,.h’.mo 

Thus, if h’ was equal to h, andp was - 03, then steps 2 and 3 would give the exact 
solution to the original problem. To summarize, the purpose of step 1 is to reduce 
the oscillating part of the initial error; that of step 2 is to find its less rapidly 
oscillating part to sufficient accuracy; while in step 3 we find a new approximate 
solution by subtracting from the old, uhnm 0, its (slowly oscillating) error. Certain of 
the steps must be repeated (on an inductive basis) to get the proper definition of 
the algorithm, but we shall not go into this any further here. 

Fedorenko proved that a certain variant of the above algorithm applied to the 
model problem requires a number of machine operations proportional only to the 
number of gridpoints to reduce the initial error by a given factor, provided that h 
is sufficiently small. This result was generalized by Bakhvalov [I] to a wide class of 
second-order equations, but still with 52 a square. In [2], some other multiple grid 
algorithms are proposed. These latter algorithms are different in principle from the 
algorithm analyzed by Bakhvalov, and possibly more natural. The difference is 
basically this: In Federenko’s algorithm it is pressupposed that a discrete problem 
is to be solved and the method adopted is to incorporate successively a sequence of 
grids, proceeding from the finest grid to the coarsest one. Brandt’s approach starts 
from a very coarse grid and then works up to tier and yet finer grids. This 
approach has the great advantage of not requiring the user to specify the grid in 
advance. Indeed, it is possible to construct an “adaptive” algorithm where the 
grids are constructed precisely to match the behavior of the solution of the 
differential equation. The latter information is available from the calculations done 
on coarser grids. This idea is far removed from the algebraic approach traditionally 
used in the solution of discrete elliptic problems. It is worth noting that both of the 
approaches we are considering make essential use of the residual equation (3.2). 

3. CALCULATION OF RESIDUAL CORRECTIONS 

We consider now a general principle for constructing algorithms making use of 
the multiple grid idea. We shall suppose that we have an approximation uhno, 
obtained by any method whatever, to the solution uL of the system of n (slight 
notational change) equations: 

Ahuh = bh. (3.1) 

Define the error l hso = uheo - uh and the residual rhso by 

Ah&O = rh.0. (3.2) 
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Evidently, if we could solve (3.2), then (3.1) would be solved too, for 
uh = z&O - l so. To get a simpler problem than (3.2) one may look for a solution 
in a subspace, which will be taken to be a p-dimensional subspace of R, spanned 
by the columns of the ir x p matrix of rank p, E. Thus, the approximate solution 
to (3.2) will have the form EC where c is a p-dimensional vector. Thus, 

A,,Ec = rhBo, (3.3) 

and we shall determine c by the familiar technique of requiring the residual 

AhEc - rhso 

to be orthogonal to another subspace, also of dimension p, and spanned by the 
columns of a rank p, n x p matrix IV. This leads to the p linear equations in p 
unknowns for c, 

W’AhEc = W’rhmo. (3.4) 

Clearly W’AhE is not singular and c is determined uniquely; therefore, 

EC = E(W’A,E)-l W’rhso 

and for sensible choices of E and W there is reason to expect that 

$0 = &‘I - /+.+“A&)-1 W’,-LO 

is a “better” approximation to ah than &O. From (3.5) it follows that 

or 
fhvo = (I- AhE( w’A,E)-l W’) rhso 

?” = (1 - E(w’AhE)-l w’Ah) Eh*‘. 

(3.5) 

A simple choice of W is just W = E. In this case c is just the Galerkin solution 
to (3.2) and therefore EC solves the problem 

min 
Y E sPano 

I/ l hso - ~1 IIAh 

where span(E) means the subspace spanned by the columns of E and /I x II;, = 
(A,x, x). Henceforth, only the case W = E will be considered. We shall choose E 
so that EtAhE is a “coarse grid analogue” of Ah , and so that c will be a coarse grid 
solution of the discrete Poisson problem (3.2). EC is a grid function defmed on the 
fine grid and in this sense E may be thought of as an operator interpolating c 
onto Sz, . 

We shall consider a particular choice of E, made in the following way: Let the 
region Q be divided up into p nonoverlapping subregions Di) i = 1, 2,...,p with 
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boundaries aPi) i = 1 2 ,p in such a way that every point P of a satisfies 
P E &, Du). Assume that’&) are chosen in such a way that Pi E Qh i = 1,2,..., n * 
Pi E Qk) for some 1 < k < p, and let 1 Gk) 1 k = 1,2,...,p be the number of 
gridpoints Pj in Sz, n P). 

Let E.i be the n-dimensional vector whose kth component is 1 QCi) I-lie if Pk: E W) 
and zero otherwise. Having formed the vectors E+ , i = 1,2,...,p construct from 
them the matrix E with E-i for its ith column; the hypotheses ensure that 
rank E = p, provided the intersections P) n f& , i = 1,2,..., p are all nonempty. 
Furthermore, in this case (which we shall assume) E’E is a diagonal nonsingular 
matrix and E(E’E)-1 E’ is the orthogonal projector onto span(E). In some cases 
it is desirable to select other values for the nonzero elements of E. There are many 
possible ideas one could use. In the “block relaxation” of Southwell [9], the 
numbers are as we have given them (in essence), but the regions P) were chosen 
according to the progress of the ordinary relaxation process, which was 
“interrupted” for the purpose of carrying out the block relaxation. 

A method in which the present method, in a sense, can be viewed as a special 
case, was proposed by Wachspress in [Is]. This work seems to contain the first 
systematic proposals for the interruption of iterations in order to carry out 
variationally based accelerations. Furthermore, the formulation in [ 151 is applicable 
even when nonpositive definite operators are involved. A recent review paper of 
Wachspress contains an account of further progress, chiefly, though not entirely, 
in the area of nuclear reactor design. 

In the general literature, there are various sporadic references to the type of idea 
we are considering; see, e.g., [lo, 12, 131. 

4. AN ALGORITHM 

For the purpose of testing out the various properties of the previously mentioned 
methods, the following algorithm was devised and implemented. We are not 
necessarily suggesting that it should be used to solve real problems (although it 
could be). Our main purpose was to see a working algorithm of the type we are 
considering. First of all, we shall state the algorithm and explain how it works. 
Some numerical results will then be given for the model problem. The algorithm 
is superficially similar to one proposed in [13], but the resemblance is not too 
much more than superficial. 

In the algorithm, each iterate depends on two previous iterates. Suppose 
u 01 , u ,..., zP are known. The general structure is as follows. From zP we do in turn 
a relaxation cycle and then a coarse grid computation. Denote the result of these 
two by iik. Then uk-l and ii” are combined to give u k+l by means of a second-degree 
method. The latter requires us to have available two parameters w and 4. The 
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relaxation sweep requires another parameter (Y and the coarse grid calculation 
requires a matrix E. The choice of these data is discussed below and as will be seen, 
relative to, say, a simple second-degree algorithm, there is no problem associated 
with the choice of the parameters w and q. Here is a formal statement of the 
algorithm for solving Au = b, A positive definite. 

ALGORITHM. Given E, cy, u”, ul, w, and q, construct the sequence {u”> according 
to 

(4 c” = uk - a(Auk - b) 

(b) Ilk = 1” - E(E’AJ~)-~ E’(AJ” - b) 

(4 uk+l = (1 - W) z+l + w[qiP + (1 - q) u”] fork = 1, 2,... . 

Part (a) is the ordinary relaxation sweep; (b) is the coarse grid calculation and 
would, as usual in iteration methods, be done by computing a “correction” c from 
E’AEc = rk. Part (c) is the second-degree calculation. In the usual notation, (a) and 
(b) may be combined into a stationary linear method with operator 

(I - E(E’AE)-l E’A)(I - aA). (4.1) 

The role of the second-degree part is to accelerate the convergence of the iterates 
produced by this operator. The subregions Dk) in the calculations done for the 
model problem were chosen in the following way: h was chosen to have the form 
h = .rr/(N2 + 1) for integers N = 5(1)10, giving problems with 54 to 104 unknowns. 
Region Sz was divided up, in the natural way, into N2 rectangular subregions each 
containing N2 gridpoints. The coarse grid operator E’AE is then proportional to 
the discrete Laplacian for a regular N x N grid, as is easy to verify. 

We need to recall several facts about the second-degree algorithms. Consider 
the algorithm with y given, v: D C R, --f R, , xk+l = I&“) where x* = y(x*). 
Let v’ denote the FrechCt derivative of y evaluated at x*, and let 
Pn ‘< ’ --. Pn-1 L 

< . . . < pl’ < 1 be the eigenvalues, assumed real, of the operator y’. 
Let pi = 1 - pi’, i = 1, 2 ,..., n. The parameters q and w in the second-degree 
method interact in the following way: Associated with each q is a certain number 
p(q); for each q there exists a unique, best w, determined by the formula familiar 
from the SOR theory, 

2 
4q) = 1 + (1 - i;(q)“)‘/” 

and the effective spectral radius for this w is 

(w(q) _ 1)1,2 = 1 - (1 - #G)“Y’ 
1 + (1 - ji(q)2)‘/” * 
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It follows that the most rapid convergence occurs when ji(q)z is as small as possible 
Now it is easy to see that the best value of q and the corresponding value of p(q) 
in the above sense is 

This situation can be expressed by saying that the effect of using 4 is to translate 
and compress the spectrum {pl ,..., pin} so that it is symmetric about the origin, 
the optimum value of w then being determined by the extreme points of this 
translated spectrum. In particular, if the spectrum {pl ,..., ZJ~} is initially not 
symmetric about the origin, then improvements in the rate of convergence are 
obtained by using a suitable value for q. 

In the particular algorithm defined above, the role of the matrix v’ is played 
by (4.1). We choose 01 = P/4 and carry out a similarity transformation on (4.1) 
with the matrix S, where S2 = A and S is positive definite. Eq. (4.1) then takes the 
form 

(Z - SE(E’AE)-1 E’S)(Z - (P/4)A). (4.2) 

The second member is the orthogonal projector onto span(SE) and is therefore 
equal to its own square. Consequently, the eigenvalues of (4.2) are those of the 
symmetric matrix 

(Z - SE(E’AE)-l E’S)(Z - (h2/4)A)(I - SE(E’AE)-l E’S). (4.3) 

By forming the Rayleigh quotient and using the well-known theorem on con- 
strained Rayleigh quotients, we infer that the spectrum of (4.3) lies inside that of 
(Z - (h2/4)A). It follows from our previous discussion that the optimal second- 
degree method for (4.2) converges no slower than that for (Z - (h2/4)A). It may be 
expected to converge considerably faster as we now explain (somewhat 
heuristically): Let w1 be the eigenfunction of A associated with the smallest 
eigenvalue h1 . Then the matrix 

(Z - wl(wl’wJ-l Wl’)(Z - (h2/4)A) (4.4) 

has the same eigenvectors as A and with the eigenvalue A1 “replaced” by zero; the 
other eigenvalues are those of (I - (h2/4)A). Note that (Z - wl(wl’wl)-l wl’) is an 
orthogonal projector. A similar principle is evident in (4.2). The difference is that 
SE is not now an invariant subspace of A. But it “nearly” is because of the choice 
of E and because of the fact that S and A have the same eigenvectors. In a sense, 
the subspace span(E) is more closely related to the invariant subspace of A, 
van(w, , w2 ,..., w,), than to any other of the invariant subspaces. In this sense 
we can expect that the primary effect of the coarse grid operations is to deflate out 
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of the operator (I- (h2/4)A) some eigenvalues from the upper part (closest to + 1) 
of its spectrum. The finer the coarse grid the more of the spectrum that will be 
deflated. Parameter q in the second-degree algorithm is chosen to centralize the 
(deflated) spectrum of the composite operator in (4.2), while use of the corre- 
sponding optimum w enables an order of magnitude increase in the rate of 
convergence to be obtained over the algorithm with w = 1. 

Obviously, there are serious shortcomings to the previous argument, but it is 
felt that the essentials of the working of the algorithm are contained in it. 

Fuller details of the second-degree and related methods may be found in 
[6, 14, 171. The formulation given is taken from [7]. 

5. NUMERICAL RESULTS 

As already indicated, we used the algorithm of Section 4 to solve the model 
problem, with boundary function 9) = 1, and the right-hand side f = 0. The range 
of values of h was h = rr/(iV* + 1) for integers N = 5(1)10. The subregions 
were rectangular, N* of them each containing N* points. The idea of this sub- 
division and various other ideas were borrowed from the interesting paper [13]. 
We set out to discover the rate of convergence of the algorithm and the sensitivity 
of this rate relative to the choice of parameters. The algorithm chosen should be 
rather insensitive to the choice of parameters for the kind of h one might encounter 
in practice. In every case, the initial approximation was a random vector with 
entries uniformly distributed in [O, 21. The second “initial” approximation was 
generated by use of the iteration with operator (4.1). This choice results in a 
significant saving of machine time because, as is shown in [6], the second-degree 
algorithm then has the property of actually reducing the length of the error vector 
at every iteration. In general, the length of the error vector will increase before it 
starts decreasing. Parameter E was chosen as h2/4 (of course the calculations were 
not literally arranged in this way). Concerning the solving of the coarse grid 
equations, E’AEc = r, we did either N or 2N SOR iterations, starting from zero 
and using the theoretically and a priori computable optimum value of w. The 
choice makes little difference to the overall machine time since the amount of work 
for the coarse grid calculation in either case is negligible compared to the time for 
one relaxation sweep over the fine grid. The greater part of the time for the coarse 
grid calculation, in the present implementation, was spent on the computation of 
the residual for the right-hand side. The entire coarse grid calculation is equivalent 
in time to one second-degree sweep (roughly). Although 2N iterations were used 
for the figures given below, the results are not changed in any essential way by 
doing just N iterations. These tactics might have to change if a finer coarse grid 
was used. All calculations were done in double precision on the California Institute 
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of Technology IBM 370/158. The use of double-precision arithmetic was found 
to be essential to the coarse grid calculations. A calculation was terminated when, 
for some k, II z.P+l - rP1 /Im < 10-6. This criterion is useful only because the 
exact solution is u 3 1. 

The general nature of the calculations performed for each N was that for a range 
of values of q, the problem was “solved” in the sense of the termination criterion 
for a range of values of w near to the optimum for that q. From our earlier 
discussion it follows that 4 + 1 as h + 0, and from the second-degree theory of 
choosing q, it follows that there is little damage done from making rather drastic 
underestimates of 4. This has little to do with the multiple grid part of the algorithm, 
but it does concern the fact that the graph of ,2(q) as a function of q is linear and 
has a slope converging to zero as h -+ 0 for q E (0, 4). 

In Table I we give some results for the case N = 8, h = rr/65 corresponding to 
4096 unknowns. These results are typical of all the calculations. The entries are 
the number of iterations used. The behavior in the last line is explained by the 
observation that 4 E (0.98,0.99). Note also the insensitivity of the number of 
iterations with respect to w. The reason for this is the smallness of the number p(q). 

TABLE I 

(N = 8, h = a/65) 

4lQJ 1.55 1.56 1.57 1.58 I .59 1.60 1.61 

0.96 64 60 57 56 58 60 62 
0.97 63 59 56 56 59 60 62 
0.98 62 58 55 57 58 60 63 
0.99 105 101 98 94 - - - 

It is as if we were solving by SOR a problem on a grid of size h’ - 0(W2). There 
is no point in looking for more than two decimal places in w. A similar table was 
constructed for each value of N. In Table II we give a summary of the best results 

TABLE II 

N 4 0 I 0, L 

5 0.95 1.41 36 1.39-1.43 40-37 
6 0.97 1.48 42 1.45-1.50 49a5 
7 0.97 1.53 49 1.5Gl.55 56-51 
8 0.98 1.57 55 1.55-1.60 62-60 
9 0.98 1.61 62 1.60-1.65 64-71 

10 0.98 1.64 70 1.62-1.65 77-71 
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obtained for each N (the smallest number of iterations in each case), along with the 
corresponding 4 and w. No attempt was ever made to work with more than two 
decimal places in the parameters. The last two columns show the variation in the 
required number of iterations for w varying in the indicated range wy and with the 
value of q shown. Whenever different parameter values gave the same smallest 
number of iterations, the values shown are the largest q < 4 and then the smallest 
w for which the tie occurred. The noticeable things in Table II are the slow growth 
in the number of iterations required and the absence of critical behavior in the 
number of iterations as a function of w. 

Finally, we shall say a few words about the rate of convergence. At the con- 
clusion of each computation an average effective spectral radius was computed 
from the formula 

( 
final residual II1 

a= initial residual 1 

where I is the number of iterations. 
For a given value of q, not necessarily optimal, the second-degree theory 

predicts that provided w is chosen to be the optimal w for this q, w(q), then as 
I--+ 03, a -+ (w(q) - 1)1/2. Although the empirically detremined w’s are not 
optimal, we give in Table III the numbers a and a’ = (w’(q) - l)l/* where w’(q) 
is the best w found in each case, as indicated in Table I. There is tolerably good 
agreement to two decimal places indicating that within the limitations of the 
experiment, the best w’s are near to optimal. The q’s are at most 0.01 smaller 
than their optimal values. In the last row of Table III we compute the quantity 

TABLE III 

N 5 6 7 8 9 10 

UN 0.638 0.694 0.726 0.752 0.778 0.797 
UN’ 0.640 0.693 0.728 0.755 0.781 0.800 

1 - 2(~w)-~p/2 0.608 0.671 0.717 0.752 0.779 0.800 

1 - 2(79/*)-l hl/*. This formula was obtained from heuristic reasoning based on 
the explanations in Section 4 and on other empirical considerations. The agreement 
does lend support to the conjecture that the rate of convergence is not better than 
O(hl/*). The corresponding work count is 0(n5j4) operations where n is the number 
of equations. 

We should also say that the model problem that was considered probably 
shows the algorithm at its best for the particular choice of E that we made. 
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6. CONCLUDING REMARKS 

It is clear that the multiple grid idea can be used in many ways. Obvious 
variations are the use of different matrices E and the use of different relaxation 
algorithms such as the Gauss-Seidel method. The variation we looked at has the 
merit of theoretical simplicity. Although this paper has been largely descriptive, 
we hope that it has demonstrated that multiple grid methods are of some usefulness 
and interest. 
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